Stereo images, containing left and right view images with disparity, are utilized in solving low-vision tasks recently, e.g., rain removal and super-resolution. Stereo image restoration methods usually obtain better performance than monocular methods by learning the disparity between dual views either implicitly or explicitly. However, existing stereo rain removal methods still cannot make full use of the complementary information between two views, and we find it is because: 1) the rain streaks have more complex distributions in directions and densities, which severely damage the complementary information and pose greater challenges; 2) the disparity estimation is not accurate enough due to the imperfect fusion mechanism for the features between two views. To overcome such limitations, we propose a new \underline{Stereo} \underline{I}mage \underline{R}ain \underline{R}emoval method (StereoIRR) via sufficient interaction between two views, which incorporates: 1) a new Dual-view Mutual Attention (DMA) mechanism which generates mutual attention maps by taking left and right views as key information for each other to facilitate cross-view feature fusion; 2) a long-range and cross-view interaction, which is constructed with basic blocks and dual-view mutual attention, can alleviate the adverse effect of rain on complementary information to help the features of stereo images to get long-range and cross-view interaction and fusion. Notably, StereoIRR outperforms other related monocular and stereo image rain removal methods on several datasets. Our codes and datasets will be released.
translated by 谷歌翻译
Low-light stereo image enhancement (LLSIE) is a relatively new task to enhance the quality of visually unpleasant stereo images captured in dark conditions. So far, very few studies on deep LLSIE have been explored due to certain challenging issues, i.e., the task has not been well addressed, and current methods clearly suffer from two shortages: 1) insufficient cross-view interaction; 2) lacking long-range dependency for intra-view learning. In this paper, we therefore propose a novel LLSIE model, termed \underline{Suf}ficient C\underline{r}oss-View \underline{In}teraction Network (SufrinNet). To be specific, we present sufficient inter-view interaction module (SIIM) to enhance the information exchange across views. SIIM not only discovers the cross-view correlations at different scales, but also explores the cross-scale information interaction. Besides, we present a spatial-channel information mining block (SIMB) for intra-view feature extraction, and the benefits are twofold. One is the long-range dependency capture to build spatial long-range relationship, and the other is expanded channel information refinement that enhances information flow in channel dimension. Extensive experiments on Flickr1024, KITTI 2012, KITTI 2015 and Middlebury datasets show that our method obtains better illumination adjustment and detail recovery, and achieves SOTA performance compared to other related methods. Our codes, datasets and models will be publicly available.
translated by 谷歌翻译
在线知识蒸馏(OKD)通过相互利用教师和学生之间的差异来改善所涉及的模型。它们之间的差距上有几个关键的瓶颈 - 例如,为什么以及何时以及何时损害表现,尤其是对学生的表现?如何量化教师和学生之间的差距? - 接受了有限的正式研究。在本文中,我们提出了可切换的在线知识蒸馏(Switokd),以回答这些问题。 Switokd的核心思想不是专注于测试阶段的准确性差距,而是通过两种模式之间的切换策略来适应训练阶段的差距,即蒸馏差距 - 专家模式(暂停老师,同时暂停教师保持学生学习)和学习模式(重新启动老师)。为了拥有适当的蒸馏差距,我们进一步设计了一个自适应开关阈值,该阈值提供了有关何时切换到学习模式或专家模式的正式标准,从而改善了学生的表现。同时,老师从我们的自适应切换阈值中受益,并基本上与其他在线艺术保持同步。我们进一步将Switokd扩展到具有两个基础拓扑的多个网络。最后,广泛的实验和分析验证了Switokd在最新面前的分类的优点。我们的代码可在https://github.com/hfutqian/switokd上找到。
translated by 谷歌翻译
To obtain lower inference latency and less memory footprint of deep neural networks, model quantization has been widely employed in deep model deployment, by converting the floating points to low-precision integers. However, previous methods (such as quantization aware training and post training quantization) require original data for the fine-tuning or calibration of quantized model, which makes them inapplicable to the cases that original data are not accessed due to privacy or security. This gives birth to the data-free quantization method with synthetic data generation. While current data-free quantization methods still suffer from severe performance degradation when quantizing a model into lower bit, caused by the low inter-class separability of semantic features. To this end, we propose a new and effective data-free quantization method termed ClusterQ, which utilizes the feature distribution alignment for synthetic data generation. To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics to imitate the distribution of real data, so that the performance degradation is alleviated. Moreover, we incorporate the diversity enhancement to solve class-wise mode collapse. We also employ the exponential moving average to update the centroid of each cluster for further feature distribution improvement. Extensive experiments based on different deep models (e.g., ResNet-18 and MobileNet-V2) over the ImageNet dataset demonstrate that our proposed ClusterQ model obtains state-of-the-art performance.
translated by 谷歌翻译
盲目图像脱毛(BID)仍然是一项具有挑战性且重大的任务。从深度学习的强大合适能力中受益,成对的数据驱动的监督竞标方法取得了巨大进展。但是,配对数据通常是手工合成的,现实的模糊比合成数据更复杂,这使得监督的方法无能为力地建模现实的模糊和阻碍其现实世界的应用。因此,没有配对数据的无监督的深入竞标方法提供了某些优势,但是当前的方法仍然存在一些缺点,例如笨重的模型大小,较长的推理时间以及严格的图像分辨率和域要求。在本文中,我们提出了一个轻巧和实时的无监督的投标基线,称为频域对比度损失约束的轻质自行车(不久,fcl-gan),具有吸引人的特性,即无图像域限制,无图像分辨率限制,25x,25x比SOTA轻,比Sota快5倍。为了确保轻巧的属性和性能优势,设计了两个新的合作单元,称为轻量级域转换单元(LDCU)和无参数频域对比单元(PFCU)。 LDCU主要以轻质方式实现域间转换。 PFCU进一步探讨了频域中模糊域和尖锐域图像之间的相似性度量,外部差异和内部连接,而无需涉及额外的参数。在几个图像数据集上进行的广泛实验证明了我们的FCL-GAN在性能,模型大小和参考时间方面的有效性。
translated by 谷歌翻译
Despite the success that metric learning based approaches have achieved in few-shot learning, recent works reveal the ineffectiveness of their episodic training mode. In this paper, we point out two potential reasons for this problem: 1) the random episodic labels can only provide limited supervision information, while the relatedness information between the query and support samples is not fully exploited; 2) the meta-learner is usually constrained by the limited contextual information of the local episode. To overcome these problems, we propose a new Global Relatedness Decoupled-Distillation (GRDD) method using the global category knowledge and the Relatedness Decoupled-Distillation (RDD) strategy. Our GRDD learns new visual concepts quickly by imitating the habit of humans, i.e. learning from the deep knowledge distilled from the teacher. More specifically, we first train a global learner on the entire base subset using category labels as supervision to leverage the global context information of the categories. Then, the well-trained global learner is used to simulate the query-support relatedness in global dependencies. Finally, the distilled global query-support relatedness is explicitly used to train the meta-learner using the RDD strategy, with the goal of making the meta-learner more discriminative. The RDD strategy aims to decouple the dense query-support relatedness into the groups of sparse decoupled relatedness. Moreover, only the relatedness of a single support sample with other query samples is considered in each group. By distilling the sparse decoupled relatedness group by group, sharper relatedness can be effectively distilled to the meta-learner, thereby facilitating the learning of a discriminative meta-learner. We conduct extensive experiments on the miniImagenet and CIFAR-FS datasets, which show the state-of-the-art performance of our GRDD method.
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
This is paper for the smooth function approximation by neural networks (NN). Mathematical or physical functions can be replaced by NN models through regression. In this study, we get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters, through discussing a few topics about regression. First, we reinterpret inside of NNs for regression; consequently, we propose a new activation function--integrated sigmoid linear unit (ISLU). Then special charateristics of metadata for regression, which is different from other data like image or sound, is discussed for improving the performance of neural networks. Finally, the one of a simple hierarchical NN that generate models substituting mathematical function is presented, and the new batch concept ``meta-batch" which improves the performance of NN several times more is introduced. The new activation function, meta-batch method, features of numerical data, meta-augmentation with metaparameters, and a structure of NN generating a compact multi-layer perceptron(MLP) are essential in this study.
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译